Quadratic Algebras with Ext Algebras Generated in Two Degrees

نویسندگان

  • Thomas Cassidy
  • T. CASSIDY
چکیده

Green and Marcos [3] call a graded k-algebra δ-Koszul if the corresponding Yoneda algebra Ext(k, k) is finitely generated and Ext(k, k) is zero unless j = δ(i) for some function δ : N→ N. For any integer m ≥ 3 we exhibit a non-commutative quadratic δ-Koszul algebra for which the Yoneda algebra is generated in degrees (1, 1) and (m,m+ 1). These examples answer a question of Green and Marcos. These algebras are not Koszul but are m-Koszul (in the sense of Backelin).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regular Algebras of Dimension 4 and Their A∞-ext-algebras

We construct four families of Artin-Schelter regular algebras of global dimension four. This is a complete list of Artin-Schelter regular algebras of global dimension four that are generated by two elements of degree 1 and whose Ext-algebra satisfies certain “generic” conditions. These algebras are also strongly noetherian, Auslander regular and Cohen-Macaulay. One of the main tools is Keller’s...

متن کامل

Dually quasi-De Morgan Stone semi-Heyting algebras I. Regularity

This paper is the first of a two part series. In this paper, we first prove that the variety of dually quasi-De Morgan Stone semi-Heyting algebras of level 1 satisfies the strongly blended $lor$-De Morgan law introduced in cite{Sa12}. Then, using this result and the results of cite{Sa12}, we prove our main result which gives an explicit description of simple algebras(=subdirectly irreducibles) ...

متن کامل

Dually quasi-De Morgan Stone semi-Heyting algebras II. Regularity

This paper is the second of a two part series. In this Part, we prove, using the description of simples obtained in Part I, that the variety $mathbf{RDQDStSH_1}$ of regular dually quasi-De Morgan Stone semi-Heyting algebras of level 1 is the join of the variety generated by the twenty 3-element $mathbf{RDQDStSH_1}$-chains and the variety of dually quasi-De Morgan Boolean semi-Heyting algebras--...

متن کامل

Constructing Modules with Prescribed Cohomological Support Luchezar L. Avramov and Srikanth B. Iyengar

A cohomological support, Supp A (M), is defined for finitely generated modules M over a left noetherian ring R, with respect to a ring A of central cohomology operations on the derived category of R-modules. It is proved that if the A-module Ext R (M, M) is noetherian and Ext R (M, R) = 0 for i ≫ 0, then every closed subset of Supp A (M) is the support of some finitely generated R-module. This ...

متن کامل

A Class of Quadratic Matrix Algebras Arising from the Quantized Enveloping Algebra

A natural family of quantized matrix algebras is introduced. It includes the two best studied such. Located inside Uq(A2n−1), it consists of quadratic algebras with the same Hilbert series as polynomials in n variables. We discuss their general properties and investigate some members of the family in great detail with respect to associated varieties, degrees, centers, and symplectic leaves. Fin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009